4.1 Inverse Functions

In a one-to-one function, each x-value corresponds to only \qquad y-value, and each y-value corresponds to only \qquad x-value.

CLASSROOM EXAMPLE 1 Deciding Whether Functions Are One-to-One

 Determine whether each function is one-to-one.(a) $f(x)=-3 x+7$
(b) $f(x)=\sqrt{49-x^{2}}$

CLASSROOM EXAMPLE 2 Using the Horizontal Line Test

Determine whether each graph is the graph of a one-to-one function.
(a)

(b)

Inverse Functions

CLASSROOM EXAMPLE 3 Deciding Whether Two Functions are Inverses
Let functions f and g be defined respectively by

$$
f(x)=2 x+5 \quad \text { and } \quad g(x)=\frac{1}{2} x-5
$$

Is g the inverse function of f ?

CLASSROOM EXAMPLE 5 Finding Equations of Inverses
Determine whether each equation defines a one-to-one function. If so, find the equation of the inverse.
(a) $f(x)=|x|$
(b) $\quad g(x)=4 x-7$
(c) $h(x)=x^{3}+5$
(d) $k(x)=2^{x}$

CLASSROOM EXAMPLE 6 Finding the Equation of the Inverse of a Rational Function The following rational function is one-to-one. Find its inverse.

$$
f(x)=\frac{-3 x+1}{x-5}, x \neq 5
$$

